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Abstract—Load control of populations of thermostatically-
controlled loads (TCLs) is considered a promising approach to
match generation and consumption in electricity grids from the
demand side. However, when these loads become synchronised
they present a decaying oscillatory aggregate demand, which
results in undesired power peaks. In this paper we describe
the nature of these oscillations and develop a list of factors
that determine its shape. We perform a sensitivity analysis
which allows us to identify important relations between the
physical parameters of the TCLs and their aggregate dynamics.
Beyond describing fundamental behaviour, these relations can
help develop and validate analytical expressions that facilitate
control design, enabling the use of TCLs for demand response.

I. INTRODUCTION

The widespread use and inherent energy storage capabil-
ities of thermostatically-controlled loads (TCLs) such as air
conditioners (ACs) and fridges, make these loads promising
candidates for demand response [1]. Controlling large groups
of TCLs can help achieve the necessary balance between
generation and consumption in electricity grids. This demand-
side approach can facilitate renewable energy integration and
defer expensive infrastructure upgrades [2].

However, remotely controlling groups of TCLs may result
in large transients in the collective power demand, which may
lead to undesired power peaks. Figure 1, shows simulated
aggregate demand responses of a population of (10,000) TCLs
in three of these likely unwanted situations, namely

• when, following an extended power outage, the power of
all of the ACs is restored (Figure 1(a)),

• when all of the devices are subject to a step change in
the temperature set point (Figure 1(b)), and

• when a load control event is finished and full independent
control is returned to the ACs while they are still sub-
stantially synchronised (Figure 1(c)), which could be due
to bad planning of the DLC event or a communications
problem terminating the event prematurely.

We refer to these events as synchronisation events because
they make a significant proportion of the TCLs in the pop-
ulation synchronise (i.e., turn on or off at the same time),
causing an observable change in their aggregate demand.
Note in Figure 1 that this observable change (sometimes
referred to as “cold load pickup”) comes in the form of
damped oscillatory transients, which eventually converge the
steady state aggregate demand of the population. Furthermore,
similar oscillations may occur with loads under randomised
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(a) Power outage
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(b) Common step change in tempera-
ture set point
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(c) Bad load control event

Fig. 1. Examples of synchronisation events that can cause oscillations in the
aggregate power demand of a population of TCLs.

(but uncoordinated) autonomous control, as illustrated in [1]
for populations of plug-in electric vehicles.

Developing models of this oscillatory response and the
dynamics in general of the aggregate power of a population
of TCLs is currently an area of significant interest, as these
models prove useful not only for simulation but also control
design [2]–[8]. Model-based controllers show great perfor-
mance, enabling the use of populations of TCLs to shift load
from peak to off-peak times and to follow the intermittent
output of renewable generation.

This paper presents a comprehensive sensitivity analysis of
the basic dynamic characteristics of the aggregate response
of a population of ACs to a synchronisation event. In par-
ticular, we focus on identifying the factors that affect most
significantly the shape of this response. Our approach in this
study is mostly numerical: we simulate populations of ACs and
observe the changes in the aggregate response to variations in
the simulation parameters.

In particular, we analyse how the response is influenced
by the type and level of heterogeneity in the population, the
ratio between mean thermal parameters, the magnitude of the
synchronisation event and the steady-state aggregate demand.
Our main three findings are that a) more heterogeneous
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populations present more damped oscillatory responses, b)
heterogeneity does not affect the period of the oscillations,
and c) the type of distribution of the parameters R, P and C
in the population does not affect the oscillations significantly.

II. SIMULATION METHODOLOGY

We consider a population of n ACs regulating room temper-
atures by hysteretic control with a thermostat and relay actua-
tor. The relay of the i-th AC, i ∈ {1, 2, . . . , n}, is represented
by the discrete state variable mi ∈ {0, 1}, which switches on
the AC compressor (mi = 1) or off (mi = 0) to maintain
the temperature θi within the pre-specified hysteresis band
[θ−i , θ

+
i ]. This temperature band is centred on the nominal

temperature set-point θr
i = (θ−i + θ+

i )/2. Such dynamics can
be described by the well-known hybrid state model (e.g., [9],
[10])

dθi(t)

dt
= − 1

CiRi

[
θi(t)− θa(t) +mi(t)RiPi − wi(t)

]
, (1)

mi(t
+) =


0, if θi(t) ≤ θ−i + u(t),

1, if θ(t) ≥ θ+
i + u(t),

mi(t), otherwise,
(2)

where θa is the ambient temperature outside the rooms (◦C)
(assumed common to all ACs), Ci and Ri are the i-th
room thermal capacitance (kWh/◦C) and thermal resistance
(◦C/kW), and Pi is the cooling thermal power of the i-th AC
(kW). The input signal wi represents unpredictable thermal
disturbances (heat gains or losses). The control signal u
(common to all ACs) introduces small temporary temperature
set-point offsets to the population during LC events (using this
type of control signal has been proposed in a number of recent
works [2], [3], [7]).

We simulate individually 10000 ACs as an array of instances
of the continuous and discrete state dynamic equations (1) and
(2) using the event-based simulation environment PowerDEVS
[11]. The thermal parameters R, P and C in (1) are assumed to
be lognormally distributed in the population (as done in [2]).
The relative standard deviation σr of these three parameters
with respect to their mean is assumed to be the same (as
done in [2], [4]). We use the parameters in Table I for our
simulations, which were adapted from [2] to the characteristics
of Australian suburban houses [12].

The aggregate electrical power demand (kW) of the popu-
lation of ACs as a fraction of the maximum electrical power
demand (when all the AC are on) is given by

Dac(t) =

∑n
i=1 mi(t)

Pi
COPi∑n

i=1
Pi

COPi

, (3)

where COPi is the coefficient of performance (cooling) of the
i-th AC, defined as the nominal ratio of rate of heat removal
to electric power demand.

III. THE NATURE OF THE OSCILLATIONS IN THE
AGGREGATE POWER DEMAND OF A POPULATION OF ACS

Let us analyse the oscillations for the step case in Fig-
ure 1(b) (those observed in the power outage and bad-DLC

Param. Value Description
R 2 oC/kW Mean thermal resistance (distributed lognor-

mally according to σr)
C 3.6 kWh/oC Mean thermal capacitance (distributed log-

normally according to σr)
P 6 kW Mean thermal power (distributed lognor-

mally according to σr)
θr 20 Mean temperature set point for the ACs

uniformly distributed in [19.5, 20.5] (◦C).
θr
i = (θ−i + θ+

i )/2.
H 1 Hysteresis width (θ+

i − θ−i ) (◦C)
θa 26 oC Outside temperature
σw 0.01 oCs−

1
2 Standard deviation of the noise process w in

Eq. (1)
σr 0.2 Standard deviation of log-normal distribu-

tions as a fraction of the mean value for R,
C and P

COP 2.5 Coefficient of performance (thermal power
on electrical power)

n 10000 Number of ACs in the population

TABLE I
SIMULATION PARAMETERS.

scenarios shown in Figures 1(a) and 1(c) are of similar nature).
Figure 2 presents snapshots of the temperature distributions in
the population at various stages during the transients. Each
subfigure 2(a)–2(a) contains three subplots. The left subplot
shows, the aggregate demand response (normalised by the
maximum demand), and the time t at which the histograms are
plotted. The middle subplot shows the temperature histogram
of the ACs that are on at the corresponding time t, and the
right subplot shows the histogram of the ones that are off.
To aid visualisation, all of the ACs in Figure 2 are assumed
to have the same temperature set point and hysteresis band
(however, this is no the case in the rest of the paper, where
both parameters are distributed in the population). The step
raises the set point by 0.5 oC, half the width of this hysteresis
band.

Just before the step takes place, the temperatures are
distributed almost uniformly within the hysteresis band
[19.5; 20.5], as can be seen in Figure 2(a). Immediately after
the step (Figure 2(b)), the “cooler” half of the ACs that were
on turned off, since their temperatures are now below the
newly-defined hysteresis band. This causes an instantaneous
reduction in power demand at the time of the step.

After the step, there is a period in which no off ACs turn
on, but the on ACs that are close to the new lower hysteresis
boundary (20 oC) continue to turn off. This causes the demand
to keep decreasing for some time after the step.

When the off devices start to reach the newly defined upper
boundary of the hysteresis width (21 oC), they turn on and
cause the aggregate demand to decrease more slowly until
it reaches a trough (Figure 2(c)). After this local minimum
there are, on average, more ACs turning on than turning off,
which causes the demand to rise (Figures 2(d) and 2(e)) until
it reaches a peak (Figure 2(f)).

Eventually, as shown in Figure 2(h), the histograms (and
the aggregate demand) are back to steady state, now half a
degree higher, as intended with the step.

Summarising, when a significant portion of a heterogeneous
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(a) t = 1000
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(b) t = 1010
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(c) t = 1040
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(d) t = 1070
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(e) t = 1090
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(f) t = 1150
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(g) t = 1250
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(h) t = 1590

Fig. 2. Temperature histograms of 10000 ACs after a 0.5 oC step increment
in their temperature set point at t = 1000. Subfigure rows (a) to (h) show
on the left the aggregate demand response with a red dashed line indicating
the snapshot time for the histograms shown on the centre and right columns:
temperature distribution for ACs that are “on” (centre) and “off” (right).

group of ACs is forced to switch on or off at the same
time, the equilibrium between the devices switching on and
those switching off is disrupted. When more ACs switch on
than off, the aggregate demand increases, and when more
devices turn off than on, it decreases. The heterogeneity in
the population causes these imbalances to decay over time,
until a new equilibrium is reached and the aggregate demand
stops oscillating (i.e., the system reaches a dynamic steady
state). Following, we analyse a number of factors that affect
the particular shape of these oscillations.
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Fig. 3. Effect on the aggregated response when varying σr, the standard
deviation of the parameters R, C and P as a fraction of their means.

IV. FACTORS THAT INFLUENCE THE CHARACTERISTICS OF
THE OSCILLATIONS IN AGGREGATE POWER DEMAND

As we will show next, the transient aggregate demand
response of a population of ACs to a common step change
in temperature set point depends on a number of factors that
affect its shape, namely

1) level of heterogeneity in the population,
2) type of heterogeneity in the population,
3) ratio between mean thermal parameters,
4) magnitude of the synchronisation event and
5) steady-state aggregate demand.
In this section we perform a sensitivity analysis of the

impact of each of these factors on the aggregate power demand
of a simulated population of ACs. In our analysis we will
use a common step change in the temperature set point (such
as the one in Figure 1(b)) as the example synchronisation
event because the aggregate power of a population of ACs and
other TCLs may be effectively controlled by manipulating a
common temperature set point offset [2]–[4], [13]. However,
most of the conclusions drawn from the response to a step
change are also applicable to other synchronisation events such
as power outages (unless otherwise stated).
A. Level of heterogeneity in the population

In any realistic population of TCLs there is some degree
of heterogeneity (e.g., different ACs and dwelling character-
istics). Even for “homogeneous” populations (i.e., identical
devices conditioning identical spaces) [14], internal heat gains
such as people, electrical appliances account for some hetero-
geneity (hence the stochastic variable w(t) in (1)).

The level of heterogeneity in a population directly influences
for how long the ACs remain coherent upon synchronisation.
Figure 3 shows the step response of a population of ACs,
where their parameters P , C, and R are sampled from lognor-
mal probability distributions. The relative standard deviation σr
of these three parameters with respect to their mean is varied
to illustrate the effect of heterogeneity.

After a synchronisation event, more heterogeneous popula-
tions (larger σr) lose coherence faster than less heterogeneous
ones (in dynamics systems terminology, we say that their
responses are more damped). This loss of coherence is due to
the fact that the more alike the ACs are, the longer temperature
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Fig. 4. Step responses of populations with thermal parameters distributed
uniformly, lognormally, normally (truncated) and triangular (symmetric). The
parameter means and standard deviations are as detailed in Table I.

dynamics will remain synchronised moving together from
the on to the off state and back (in the extreme, unrealistic
case of total homogeneity, the ACs will remain synchronised
indefinitely). On the other hand, highly heterogeneous popula-
tions will rapidly lose coherence and reach steady-state power
demand.

The level of heterogeneity does not seem to affect sig-
nificantly the frequency of the oscillations. However, more
heterogeneity causes an earlier first peak in the response, as the
distribution of the on and off state transitions reach a detached
balanced faster due to faster spreading of the sharp front of
the right-moving off-state distribution.
B. Type of heterogeneity in the population

The heterogeneity of a population can be characterised by
the distribution of the parameters that govern the behaviour
of the devices (i.e., those in (1)). This characterisation is done
using the lognormal distribution in [2], the uniform distribution
in [15] and the normal distribution in [4].

We consider the effect of using different distributions while
maintaining all other model properties (including mean and
variance of these parameter values). Figure 4 compares the
step responses when the distribution of R, P and C in the
population is lognormal, uniform, normal (truncated) or trian-
gular (symmetric).

As seen in Figure 4, the responses associated with normal,
lognormal and triangular distributions are almost identical,
whereas the uniform differs in that it exhibits a slightly lower
local maximum after the step and the rate of demand decrease
after such maximum is somewhat lower.

An explanation for this similarity lies in (1) where we
can see that the parameters P , C and R appear grouped as
(CR) and (RP ). Figure 5(a) depicts the histograms of the
product CR for the lognormal and uniform cases in Figure 4.
We can see in Figure 5(a) that the product distributions are
significantly similar considering how different the lognormal
and uniform distributions are1. Similarly, Figure 5(b) shows
that the distribution of the cycling times of both populations
does not present significant differences either. The cycling time

1The general expression for the distribution of the product of two random
variables is well-known but difficult to calculate [16], except for the case of
two lognormally distributed variables (whose product is lognormal).

Fig. 5. Histograms of: (left) the parameter product CR when R and C have
lognormal or uniform distributions and (right) the cycle times of the ACs,
computed from (5) and (6) as Ton + Toff .

of each AC is computed as Ton + Toff , where Ton is the time
taken by the AC to lower the temperature from θ+ to θ−, and
Toff is the time for the temperature to raise from θ− to θ+

when the AC is off. We provide expressions for Ton and Toff

later in the paper (Equations (5) and (6)).
Figures 5(a) and 5(b) indicate that the type of distribution

of the individual parameters R, P and C does not have a
substantial impact in the shape of the aggregate response.
C. Ratio between mean thermal parameters

Figure 6(a) shows how the aggregate response to a common
0.5 oC step increase in the temperature set point changes for
populations with different mean values of P (everything else
remaining the same). We see that larger mean values of P lead
to lower steady state demand. To explain this, let us define the
duty cycle of an AC as

Dc = Ton/(Ton + Toff). (4)

where Ton and Toff are, again, the times required for the tem-
perature to traverse the hysteresis band when the compressor
is on or off respectively. The value of Ton can be computed
assuming w(t) = 0 and solving (1) for initial conditions
θ(0) = θ+ and m(0) = 1 (the AC is on) [3], which yields

Ton = CR log

(
PR+ θ+ − θa
PR+ θ− − θa

)
. (5)

Similarly, we can write Toff as

Toff = CR log

(
θa − θ−
θa − θ+

)
. (6)

In (1) we can see that when the AC is on, larger P gives
faster rate of temperature change, which implies smaller Ton.
It takes little calculation to show from (5) that Ton decreases as
P increases, which is seen by differentiating Ton with respect
to P , which gives dTon/dP < 0. On the other hand, it is clear
from (6) that P has no effect on Toff . Thus, the duty cycle
(4) of an AC decreases for larger values of P . Generalising,
larger mean values of P in the population cause the mean
duty cycle to decrease, which in turn implies a lower steady-
state demand. In the particular case where all of the ACs have
the same electrical power (i.e., P divided by the coefficient
of performance), the mean duty cycle and normalised steady
state demand coincide.

A second observation from Figure 6(a) is that larger values
of P result in shorter periods in the oscillations of the
aggregate response. As shown in Figure 2, the period of these
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(a) Impact of mean P on the step response.
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(b) Impact of mean C on the step response.
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(c) Impact of mean R on the step response.

Fig. 6. Everything else remaining the same, impact of varying the mean
values of P, C and R in the population (6(a), 6(b) and 6(c) respectively).

oscillations depend on the speed at which the temperatures
move from one boundary of the hysteresis band to the other.
A larger mean P results in temperatures going from θ+ to θ−
in less time, thus reducing the period of the oscillations.

Regarding the influence of the mean value of C in the
response, in (1) the temperature change rate (both when the
AC is on and off) is inversely proportional to C. Thus, higher
mean values of C make the ACs take longer to traverse the
hysteresis band (i.e., slower oscillations). Figure 6(b) illus-
trates this: higher mean values of C in the population produce
responses with slower frequency (with no effect in steady-state
aggregate demand or magnitude of the peaks). Interestingly,
in [2] it is proven that for homogeneous populations, larger
CR implies slower convergence. The observation just made
from Figure 6(b) suggests that this theoretical result could
be generalised for heterogeneity (in Figure 6(b), larger CR
follows from C increasing and R staying the same).

With respect to the average thermal resistance in the pop-
ulation, larger mean values of R result in lower frequency
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Fig. 7. Effect of the amplitude of a step input (in oC) in u(t).

in the aggregated response. Much like in the case of C,
the reason for this can be seen in (1): larger R implies
slower temperature changes in absolute value. In fact, the
aforementioned theoretical result in [2] can also be interpreted
as: larger R and equal C implies slower convergence. This
effect is illustrated in Figure 6(c). We also see in Figure 6(c)
that higher values of R yield lower steady state power demand.
This is because higher values of R represent better insulated
spaces, saving energy by reducing heat losses.

D. Magnitude of the synchronisation event

The magnitude of the synchronisation event, namely the
duration of a power outage or the size of a collective step
increment in the temperature set point of the devices, has a
direct impact on the shape of the response. This magnitude
determines the proportion of ACs that will change state (on
to off or vice versa) with the event.

Let us compare the cases in Figure 7, showing the responses
when all of the ACs are required to raise their temperature
set-points by 25%, 50%, 75% and 100% of their hysteresis
width. We see that larger steps (and, equivalently, longer power
outages) produce larger oscillations as a higher proportion
of devices is forced to change state. If the event is large
enough to force all of the ACs to change to the same state, the
normalised power response will reach its minimum (e.g., the
1 oC step response in Figure 7) or its maximum (e.g., a long
enough power outage). Larger events do not affect further the
amplitude of the saturated demand, but in general continue
to have an impact on the time at which such demand will
stay at this level (e.g., a step increment u(t) of 3 oC will
maintain all of the ACs off for longer than a 2 oC increment.
Note that the magnitude of the event ceases to prolong this
time when θ = θm or θ = θM , where θm is the asymptotic
temperature achieved by an AC if its compressor remains on
indefinitely and θM is the asymptotic temperature when the
compressor remains off (i.e., the outside temperature θa plus
a correction factor due to internal heat loads). For instance,
once the temperatures reach θM during a power outage, the
duration of such outage is irrelevant to how long the devices
will remain on when the power is restored.

The magnitude of the temperature set-point changes (but
not outages) also affects the new steady state power demand.



Australasian Universities Power Engineering Conference, AUPEC 2013, Hobart, TAS, Australia, 29 September 3 October 2013 6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1950 2000 2050 2100 2150 2200 2250 2300 2350 2400

Tim e (m inutes)

P
o

w
e

r 
(n

o
rm

a
li
s
e

d
 t

o
 m

a
x

im
u

m
)

Fig. 8. Effect of the steady aggregate demand cycle on the aggregate response
to the same external event (a 0.5 oC step). The different demands are obtained
by considering different outside temperatures θa.

It can be seen in Figure 7 that the larger the increase in
the reference temperature, the lower the steady state power
demand. This is because the difference between the desired
and outside temperature decreases as the ACs remain on for
shorter periods of time. Conversely, lowering the temperature
increases the ACs power use.

The magnitude of the event also affects the phase of the
oscillations, as a larger event will cause that, on average, the
ACs that were affected by the event take more time to change
state. The frequency of the oscillations is independent of the
magnitude of the event in the case of power outages, as when
the electricity is restored, the rate at which the temperature
changes within the hysteresis band is unrelated to the length
of the outage. A step response, on the other hand, redefines
the boundaries of the hysteresis band, which affects the rate
at which the temperature varies within it.

E. Steady-state aggregate demand

Assuming steady state at the time of the synchronising
event, different values of the aggregate demand at the time of
the event will lead to different responses, even for the same
event. For example, Figure 8 shows how different steady-state
demands (obtained by varying the outside temperature θa)
affect the aggregate response to the same event: a common
0.5 oC step change in the temperature set-points.

We observe that the oscillations are larger when the steady
state demand is closer to 50%. Intuitively, this can be explained
by the fact that there is “more room” for the demand to swing
both upwards and downwards.

Note that for all of the scenarios in Figure 8 except for the
highest aggregate demand (θa = 32), a step change in the
temperature set point equivalent to half the hysteresis width
(0.5 oC) roughly halves the demand instantaneously. For high
average duty cycles on the other hand (e.g., for θa = 32), this
is not the case, because a significant proportion of the ACs
are on and not within such band. These are ACs that, despite
operating at 100% duty cycle, are not capable of maintaining
the temperature within the desired range (e.g., because they
are undersized). These operating ACs are unaffected by the set
point change, and continue in the on state after the step. This
observation is of particular importance if DLC is implemented

for load reduction on peak days (when ACs are likely to be
operating at a high duty cycle) and the devices are being
controlled through a temperature set point change.

V. CONCLUSIONS

When a population of ACs is subject to a synchronisation
event such as a power outage, the aggregate power demand
presents underdamped oscillations. This phenomenon has been
reported in the literature for populations of ACs and other
TCLs [2], [10], [14].

We have explained these oscillations in terms of the temper-
ature distributions in the population and studied numerically
how these oscillations depend on the characteristics of the
population and the synchronisation event. The main findings
of our study are (a) more heterogeneous populations present
more decoherent responses (i.e., more damped oscillations);
(b) heterogeneity does not affect the period of the oscillations;
and (c) the type of distribution of the parameters R, P and C
in the population does not have a significant impact in the
characteristics of the oscillations.

We have successfully identified fundamental relations be-
tween the parameters of the ACs and their aggregate dynamics.
Apart from aiding the understanding of fundamental be-
haviour, these relations can help develop and validate models
that describe these dynamics [2], [3], [7].
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